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Abstract
Background: The ability to predict antibody binding sites (aka antigenic determinants or B-cell
epitopes) for a given protein is a precursor to new vaccine design and diagnostics. Among the
various methods of B-cell epitope identification X-ray crystallography is one of the most reliable
methods. Using these experimental data computational methods exist for B-cell epitope prediction.
As the number of structures of antibody-protein complexes grows, further interest in prediction
methods using 3D structure is anticipated. This work aims to establish a benchmark for 3D
structure-based epitope prediction methods.

Results: Two B-cell epitope benchmark datasets inferred from the 3D structures of antibody-
protein complexes were defined. The first is a dataset of 62 representative 3D structures of protein
antigens with inferred structural epitopes. The second is a dataset of 82 structures of antibody-
protein complexes containing different structural epitopes. Using these datasets, eight web-servers
developed for antibody and protein binding sites prediction have been evaluated. In no method did
performance exceed a 40% precision and 46% recall. The values of the area under the receiver
operating characteristic curve for the evaluated methods were about 0.6 for ConSurf, DiscoTope,
and PPI-PRED methods and above 0.65 but not exceeding 0.70 for protein-protein docking
methods when the best of the top ten models for the bound docking were considered; the
remaining methods performed close to random. The benchmark datasets are included as a
supplement to this paper.

Conclusion: It may be possible to improve epitope prediction methods through training on
datasets which include only immune epitopes and through utilizing more features characterizing
epitopes, for example, the evolutionary conservation score. Notwithstanding, overall poor
performance may reflect the generality of antigenicity and hence the inability to decipher B-cell
epitopes as an intrinsic feature of the protein. It is an open question as to whether ultimately
discriminatory features can be found.

Background
A B-cell epitope is defined as a part of a protein antigen
recognized by either a particular antibody molecule or a

particular B-cell receptor of the immune system [1]. The
main objective of B-cell epitope prediction is to facilitate
the design of a short peptide or other molecule that can be
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synthesized and used instead of the antigen, which in the
case of a pathogenic virus or bacteria, may be harmful to
a researcher or experimental animal [2]. A  B-cell epitope
may be continuous, that is, a short contiguous stretch of
amino acid residues, or discontinuous, comprising atoms
from distant residues but close in three-dimensional space
and on the surface of the protein.

Synthetic peptides mimicking epitopes, as well as anti-
peptide antibodies, have many applications in the diag-
nosis of various human diseases [3-7]. Also, the attempts
have been made to develop peptide-based synthetic pro-
phylactic vaccines for various infections, as well as thera-
peutic vaccines for chronic infections and noninfectious
diseases, including autoimmune diseases, neurological
disorders, allergies, and cancers [8-10]. The immunoinfor-
matics software and databases developed to facilitate vac-
cine design have previously been reviewed [11,12].

During the last 25 years B-cell epitope prediction methods
have focused primarily on continuous epitopes. They
were mostly sequence-dependent methods based upon
various amino acid properties, such as hydrophilicity
[13], solvent accessibility [14], secondary structure [15-
18], and others. Recently, several methods using machine
learning approaches have been introduced that apply hid-
den Markov models (HMM) [19], artificial neural net-
works (ANN) [20], support vector machine (SVM) [21],
and other techniques [22,23]. Recent assessments of con-
tinuous epitope prediction methods demonstrate that
"single-scale amino acid propensity profiles cannot be
used to predict epitope location reliably" [24] and that
"the combination of scales and experimentation with sev-
eral machine learning algorithms showed little improve-
ment over single scale-based methods" [25].

As crystallographic studies of antibody-protein complexes
have shown, most B-cell epitopes are discontinuous. In
1984, the first attempts at epitope prediction based on 3D
protein structure was made for a few proteins for which
continuous epitopes were known [26-28]. Subsequently,
Thornton and colleagues [29] proposed a method to
locate potential discontinuous epitopes based on a pro-
trusion of protein regions from the protein's globular sur-
face. However, until the first X-ray structure of an
antibody-protein complex was solved in 1986 [30], pro-
tein structural data were mostly used for prediction of
continuous rather than discontinuous epitopes.

In cases where the three-dimensional structure of the pro-
tein or its homologue is known, a discontinuous epitope
can be derived from functional assays by mapping onto
the protein structure residues involved in antibody recog-
nition [31]. However, an epitope identified using an
immunoassay may be an artefact of measuring cross-reac-

tivity of antibodies due to the presence of denatured or
degraded proteins [32,33], or due to conformational
changes in the protein caused by residue substitutions
that may even lead to protein mis-folding [34]. Therefore,
structural methods, particularly X-ray crystallography of
antibody-antigen complexes, generally identify B-cell
epitopes more reliably than functional assays [35].

B-cell epitopes can be thought of in a structural and func-
tional sense. Structural epitopes (also called antigenic
determinants) are defined by a set of residues or atoms in
the protein antigen contacting antibody residues or atoms
[33,36]. In contrast, a functional epitope consists of anti-
gen residues that contribute significantly to antibody
binding [36,37]. Functional epitopes are determined
through functional assays (e.g., alanine scanning muta-
genesis) or calculated theoretically using known struc-
tures of antibody-protein complexes [38,39]. Thus,
functional and structural epitopes are not necessary the
same. Functional epitopes in proteins are usually smaller
than structural epitopes; only three to five residues of the
structural epitope contribute significantly to the antibody-
antigen binding energy [40]. This work focuses on struc-
tural epitopes inferred from known 3D structures of anti-
body-protein complexes available in the Protein Data
Bank (PDB) [41].

Antibody-protein complexes can be categorized as inter-
mediate transient non-obligate protein-protein com-
plexes [40,42]. Non-obligate complexes, implying that
individual components can be found on their own in vivo,
are classified as either permanent or transient depending
on their stability under particular physiological and envi-
ronmental conditions [43]. For example, many enzyme-
inhibitor complexes are permanent non-obligate com-
plexes. Transient non-obligate complexes range from
weak (e.g., electron transport complexes), to intermediate
(e.g., signal transduction complexes), and to strong (e.g.,
bovine G protein forming a stable trimer upon GDP bind-
ing) [44]. Most antibodies demonstrate intermediate
affinity for their specific antigens [45]. Based on this clas-
sification, general methods for the prediction of interme-
diate transient non-obligate protein-protein interactions
have been applied to the prediction of structural epitopes
[40,42]. For example, Jones and Thornton, using their
method for predicting protein-protein binding sites [46],
successfully predicted B-cell epitopes on the surface of the
β-subunit of human chorionic gonadotropin (βhCG)
[47].

Since the number of available structures of antibody-pro-
tein complexes remains limited, thus far only a few meth-
ods, CEP (Conformational Epitope Prediction) [48] and
DiscoTope [49], for B-cell epitope prediction using a pro-
tein of a given three-dimensional structure have been
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developed. In the near future, with growth in the number
of available structures of antibody-protein complexes,
extensive development in this area is expected. Existing
and new methods for epitope prediction demand a
benchmark which will set the standard for the future com-
parison of methods. To facilitate the further development
of this standard, we have developed B-cell epitope bench-
mark datasets inferred from existing 3D structures of anti-
body-protein complexes. Further, using the benchmark
datasets, we evaluated CEP, DiscoTope, and six recently
developed publicly available web-servers for generalized
protein-protein binding site prediction using various
approaches: protein-protein docking (ClusPro [50], DOT
[51] and PatchDock [52]); structure-based methods
applying different principals and trained on different
datasets (PPI-PRED [53], PIER [54] and ProMate [55]),
and residue conservation (ConSurf [56]).

Results and discussion
Structural epitope definition
Three definitions of an epitope inferred from the X-ray
structures of antibody-protein complexes were consid-
ered: (1) The epitope consists of protein antigen residues
in which any atom of the residue looses more than 1Å2 of
accessible surface area (ASA) upon antibody binding. ASA
was calculated using the program NACCESS [57]; (2) The
epitope consists of protein antigen residues in which any
atom of the epitope residue is separated from any anti-
body atom by a distance ≤ 4Å; (3) The epitope consists of
protein antigen residues in which any atom of the epitope
residue is separated from any antibody atom by a distance
≤ 5Å. These three definitions were used for two reasons.
First, the methods evaluated in this work use one of these
three definitions, second, we wished to study how the
epitope definition influenced the results.

Results (not shown) indicated that the structural epitope
definition did not influence the outcome. Hence, unless
otherwise specified, results are based on the second
epitope definition.

Construction of the benchmark datasets
Two benchmark datasets were derived from the 3D struc-
tures of antibody-protein complexes available from the
PDB [41]:

• Dataset #1 – Representative 3D structures of protein
antigens with structural epitopes inferred from 3D struc-
tures of antibody-protein complexes. This dataset is
intended for the study of the antigenic properties of pro-
teins as well as for development and evaluation of the
methods based on protein structure alone, or protein-pro-
tein unbound docking methods, that is, if the structure of
the antibody is known or can be modeled. Here this data-
set was used for the evaluation of scale-based methods

(DiscoTope, PIER, ProMate and ConSurf). The dataset
contains 62 antigens, 52 of which are one-chain antigen
proteins.

• Dataset #2 – Representative 3D structures of antibody-
protein complexes presenting different epitopes. This
dataset is useful for the study of the properties of individ-
ual epitopes as well as for development and evaluation of
protein-protein bound docking methods. Since the cur-
rent work attempts to compare the methods of different
types, including protein-protein docking methods, this
dataset was used to compare the performance of all meth-
ods to each other. The dataset contains 70 structures of
proteins in complexes with two-chain antibodies and 12
structures of proteins in complexes with one-chain anti-
bodies.

The flowchart describing the construction of the bench-
mark datasets is shown in Figure 1. Steps from 1 to 4 relate
to dataset #1; steps 1–6 relate to dataset #2.

Step 1 – crystal structures of protein antigens of length ≥30
amino acids at a resolution ≤ 4Å in complex with anti-
body fragments containing variable regions (Fab, VHH,
Fv, or scFv fragments) were collected from the Protein
Data Bank (PDB) [41]. Structures in which the antibody
binds antigen but involves no CDR residues have been
excluded from the analysis; there were four such structures
[PDB: 1MHH, 1HEZ, 1DEE, 1IGC]. If a structure con-
tained several complexes in one asymmetric unit and
there was no structural difference observed between these
complexes, only one complex was selected. In this way
166 structures containing 187 antibody-protein com-
plexes were selected: 24 complexes were formed by one-
chain antibody fragments and 163 complexes by two-
chain antibody fragments.

Step 2 – all antigen protein chains were structurally
aligned to one another using the CE algorithm [58]. Two
protein chains were considered similar if all the following
conditions applied: (i) rmsd ≤3Å, (ii) z-score ≥4.0, (iii)
number of residue-residue matches relative to the length
of the longest chain ≥80%, (iv) sequence identity in the
structural alignment (not considering gaps) ≥80%. The z-
score takes into account overall structural similarity and
number of gapped positions. Two protein molecules were
considered similar if each chain in one protein had a sim-
ilar chain in another protein. Figure 2 demonstrates how
the last two parameters, number of matches and sequence
identity in the structural alignment, are defined.

The structural alignment rather than sequence alignment
was used because protein structure is more conserved than
sequence, and there can be expected regions in proteins
with low sequence similarity that cannot be aligned by
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sequence alone. The structural alignment also avoids con-
sidering two proteins as similar if they have similar
sequences but different structures (possible over short
regions). The threshold values were chosen empirically
based on previous experience working with the CE algo-
rithm. As a result, the chosen threshold values separated
human and bird lysozymes (61% sequence identity) and
neuraminidases of different influenza virus strains, H3N2
and H11N9 (47% sequence identity).

Step 3 – 35 proteins were orphans represented by only one
3D structure. Of the remaining 27 proteins represented by
more than one 3D structure, the structure with the best
resolution was selected as the representative structure. The
final representative dataset contained 62 antigens [see
Additional file 1], 52 of which were one-chain antigen
proteins.

Step 4 – for each protein, epitopes inferred from the 3D
structures of antibody-protein complexes were mapped
onto the representative structure of the protein. First,
epitope residues were calculated for each complex struc-
ture using one of the aforementioned epitope definitions.
Second, epitope residues defined for the represented
structures were mapped onto the representative structure
based on the structure alignments. For example, the
hemagglutinin HA1 chain of influenza A virus was repre-
sented by six 3D structures of the protein in complexes
with Fab fragments of antibodies HC45 [PDB:1QFU],
BH151 [PDB:1EO8], HC63 [PDB:1KEN], and HC19
[PDB:2VIR, 2VIS, 2VIT]. Figure 3 illustrates a representa-
tive structure [PDB:1EO8] of hemagglutinin HA1 upon
which epitopes are mapped having been inferred from six
complex structures. In this way, epitopes inferred from
187 structures of antibody-protein complexes were
mapped onto the 62 representative protein structures. The
resulting dataset is denoted dataset #1. Data on mapped
epitope residues are available upon request.

Step 5 – to study the properties of individual epitopes and
their prediction a dataset of representative epitopes, data-
set #2 derived from 3D structures of antibody-protein
complexes defining different epitopes was constructed. An
important question to consider is how to define individ-
ual epitopes yet avoid bias by over-presentation of partic-
ular epitopes? For example (Fig. 3), while HC45 (blue)
and BH151 (magenta) epitopes overlap, neither HC63
(green) nor HC19 (red) epitopes overlap, they are sepa-
rated on the protein surface. Nevertheless, HC45 and
BH151 epitopes share residues (orange in Fig. 3), as do
HC63 and HC19 epitopes (yellow in Fig. 3). Are HC45

Hypothetical example of the structural alignment of proteins (A) (sequence AVCQYWC) and (B) (sequence ACYARTYC)Figure 2
Hypothetical example of the structural alignment of 
proteins (A) (sequence AVCQYWC) and (B) 
(sequence ACYARTYC). Number of residue-residue 
matches = 5, number of residue-residue matches relative to 
the length the longest chain = 63% (5/8), sequence identity = 
80% (4/5).

Flowchart for building benchmark datasetsFigure 1
Flowchart for building benchmark datasets.
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and BH151 epitopes similar or different? This question is
answered by considering the degree of overlap.

Two epitopes are deemed similar if, in addition to the
aforementioned criteria for epitope definition, they
belong to similar protein chains and have >75% residues
in common for both epitopes. A cut-off value of 75% for
epitope similarity was chosen empirically. Thus, the
HC45 and BH151 epitopes on influenza A virus hemag-
glutinin HA1 (Fig. 3) share 14 residues, that make up 74%
and 93% of the size of HC45 and BH151 epitopes, respec-
tively. A cut-off on epitope overlap of less than 75%

would define HC45 and BH151 epitopes as similar even
though they are known to be different. HC45 and BH151
are antibodies from different germ-lines with variable
domains sharing only 56% sequence similarity, their H3
CDR regions adopt distinct conformations and these anti-
bodies are tolerant to different mutations in hemaggluti-
nin [59]. Another example, X5 and 17B epitopes of gp120
share 75% of their residues yet X5 and 17B antibodies are
from different genes [60]. A cut-off value for epitope sim-
ilarity equal to or less than 75% would erroneously define
X5 and 17B epitopes as similar. Conversely, a cut-off value
of 80% would make epitopes inferred from different

Two orthogonal views of a representative structure, influenza A virus hemagglutinin HA1 chain [PDB:1EO8]Figure 3
Two orthogonal views of a representative structure, influenza A virus hemagglutinin HA1 chain [PDB:1EO8]. 
Chain A is shown in light gray upon which are mapped epitope residues inferred from six protein structures in complexes with 
antibody fragments: HC45 Fab [PDB:1QFU] (blue), BH151 Fab [PDB:1EO8] (magenta), HC63 Fab [PDB:1KEN] (green), HC19 
Fab [PDB:2VIR, 2VIS, 2VIT] (red). The hemagglutinin HA2 chain is shown in cyan. Residues common to HC45 and BH151 
epitopes are shown in orange; residues common to HC63 and HC19 epitopes are shown in yellow; residue Tyr98 which is a 
part of HC19 epitope inferred from structure 2VIR but not from 2VIS and 2VIT structures is shown in black; The HC19 
epitope residue Thr131 which is mutated to Ile in the 2VIS structure is shown in dark red. The HC19 epitope residue Thr155 
which is mutated to Ile in 2VIT structure is shown in violet.
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structures of the same antibody-protein complex dissimi-
lar. For example, the H57 epitope of T cell receptor N15 is
inferred from two complex structures of a single crystal
asymmetric unit ([PDB:1NFD], complexes (D)-(HG) and
(B)-(FE), where the letters denote protein chain identifi-
ers) would be dissimilar.

Given a 75% empirical cut-off for epitope similarity,
epitopes inferred from structures of complexes with two-
chain antibody fragments were divided into 44 singletons
and 26 groups; epitopes inferred from structures of com-
plexes with one-chain antibody fragments were divided
into ten singletons and two groups.

Step 6 – for each group of similar epitopes, the represent-
ative 3D structure of the antibody-protein complex was
selected based upon the following preferences. First, the
structure with no or a minimal number of heteroatoms
(excluding water) and other protein chains in the interface
(i.e., separated from any atoms of both antigen and anti-
body by ≤4Å distance) was preferred. Second, preference
was given to the structure with the largest epitope, i.e.,
maximum number of epitope residues. Third, the struc-
ture with the best resolution ≤2.5Å was preferred. Dataset
#2 of representative structures of antibody-protein com-
plexes (representative epitopes) consisted of 70 structures
of proteins in complexes with two-chain antibody frag-
ments and 12 structures of proteins in complexes with
one-chain antibody fragments.

Web-servers performance evaluation
Using the benchmark datasets introduced above we eval-
uated eight recently-developed and publicly available

web-servers. The servers use different methods yet all have
the goal of predicting either B-cell epitopes, or more gen-
erally protein-protein binding sites. The servers are listed
in Table 1. Any reference in the text to the method actually
means the server which implements that method, e.g., the
DOT method running on the ClusPro server is called Clus-
Pro(DOT).

The methods fall into two categories:

• Scale-based methods – each protein residue is assigned a
value reflecting the probability of that residue being part
of the protein interface or epitope. DiscoTope, PIER, Pro-
Mate and ConSurf fall into this category.

• Patch prediction and protein-protein docking methods – each
protein residue is predicted to be part of a surface patch of
residues defining the protein interface or epitope. Disco-
Tope, ProMate, CEP, PPI-PRED, ClusPro(DOT), and
PatchDock fall into this category.

Two methods, DiscoTope and ProMate, fall into both cat-
egories since they predict patches and assign score values
to each protein residue.

The evaluation of the methods was performed as follows.
First, the scale-based methods were analyzed on how well
the residue score values discriminate epitope versus non-
epitope residues using dataset #1. Further, performance of
all methods was evaluated on their ability to recognize
representative epitopes from dataset #2. The first step is
obviously not essential; it was performed as an example of
the application of dataset #1 that can be used for future

Table 1: Servers evaluated in this work

Server name Method type Training dataset Reference

CEP (Conformational 
Epitope Prediction)

Discontinuous epitope prediction based on residue 
solvent accessibility and spatial distribution.

No training set. [48]

DiscoTope Discontinuous epitope prediction based on amino 
acid statistics, residue solvent accessibility and spatial 
distribution.

75 structures of antibody-antigen complexes. [49]

ProMate Protein-protein binding interface prediction based on 
significant structural and sequence interface 
properties.

Manually curated; 57 protein involved in 
heterodimeric transient interactions (excluding 
antigen-antibody complexes).

[55]

PIER (Protein IntErface 
Recognition)

Protein-protein binding interface prediction based on 
local statistical properties of the protein surface 
derived at the level of atomic groups.

490 homodimeric, 62 heterodimeric and 196 
transient interfaces (excluding antigen-antibody 
complexes).

[54]

PPI-PRED (Protein-
Protein Interface 
Prediction)

Protein-protein binding interface prediction based on 
significant structural and sequence interface 
properties.

Manually curated; 180 proteins from 149 complexes 
both obligate (114) and transient (66).

[53]

ConSurf Mapping of phylogenetic information (sequence 
conservation grades) on to the surface of proteins 
with known 3D structure.

No training set. [56]

ClusPro (DOT 
program)

Rigid-body protein-protein docking based on the 
Fast-Fourier Transform correlation approach.

No training set. [50] [51]

PatchDock Rigid-body protein-protein docking based on local 
shape feature matching.

No training set. [52]
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methods development and for revealing properties of
epitope residues beyond the fact that epitopes are sites on
the protein surface.

Scale-based methods: score value distributions
DiscoTope, PIER, ProMate and ConSurf assign to each
protein residue a score reflecting the probability of that
residue being a part of the protein interface or epitope.
Details are provided in the Methods section. For the anal-
ysis of epitope residues versus non-epitope residues we
used dataset #1, that is, representative antigen structures
with epitopes mapped onto them. Here an epitope resi-
due is an antigen residue known to be part of an epitope
in any complex of this antigen with any antibody. Con-
versely a non-epitope residue implies an antigen residue
which is not known to be part of a structural epitope. To
simplify the calculation proteins with epitopes located on
more than one protein chain were discarded from the
analyses (there were 10 such proteins). As a result 52 pro-
tein antigens were analyzed [see Additional file 1].

The score distributions for epitope, non-epitope and all
protein residues were calculated for each method and are
shown in Figures 4, 5, 6, 7. Distributions taking into
account only surface residues were similar for all methods
(results not shown). The definition of a surface residue is
given in the Methods section.

DiscoTope, ProMate and ConSurf scores discriminate
epitope versus non-epitope and versus all protein resi-
dues, while PIER and ConSurf confidence scores do not.
Thus, as one can see in Figure 4, DiscoTope discriminates
epitope residues (  = -10.2, s = 5.4, number of residues N

= 1,364) from non-epitope residues (  = -13.3, s = 6.3, N

= 9,713) (p < 0.001) and all antigen residues (  = -13.0,
s = 6.3, N = 11,077) (p < 0.001). These distributions are

significantly different (p < 0.001) regardless of the epitope
definition used. The ConSurf conservation score also dis-
criminates epitope residues (  = 0.273, s = 1.050, N =

1,119) versus non-epitope residues (  = -0.049, s =

0.987, p < 0.001) and versus all antigen residues (  = -
0.007, s = 1.00, N = 8,684, p < 0.001) (Fig. 5). The same
was true for epitope vs. all surface residues. Further, the
confidence level did not change when the definition of
surface residues and/or epitope residues was changed
(data not shown). However, if only residues with ConSurf

x
x

x

x
x

x

Distribution of ProMate scores for epitope, non-epitope and all protein residuesFigure 6
Distribution of ProMate scores for epitope, non-epitope and 
all protein residues.

Distribution of ConSurf scores for epitope and all protein residuesFigure 5
Distribution of ConSurf scores for epitope and all 
protein residues. For the definition of confidence score 
see the Methods section.

Distributions of DiscoTope scores for epitope, non-epitope and all protein residuesFigure 4
Distributions of DiscoTope scores for epitope, non-epitope 
and all protein residues.
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confidence score values were considered, no significant
difference between epitope and other protein residues was
observed (epitope residues:  = 0.197, s = 0.539; non-

epitope residues:  = 0.194, s = 0.556, p > 0.05). For Pro-

Mate mean scores for epitope residues (  = 52.8, s = 25.4,
N = 1,363) were significantly higher than for all antigen
residues (  = 46.5, s = 28.1, N = 11,074) or non-epitope
residues or all surface residues (p < 0.001) (Fig. 6). The
PIER score does not discriminate epitope versus other
antigen residues (epitope residues:  = 11.9, s = 11.4, N =

1,363; non-epitope residues:  = 12.6, s = 13.7; N =
8,221, p > 0.05) (Fig. 7).

These results suggest that epitope residues are less con-
servative according to the ConSurf evolutionary conserv-
ancy scores than protein surface residues in general at a
99.9% confidence level (p < 0.001). PIER, which is trained
on 3D structures of all protein-protein complexes availa-
ble in the PDB, could not distinguish epitopes from the
rest of the protein surface. One possible explanation of
this failure is that epitope residues do share some proper-
ties with residues having transient non-obligate hetero-
interactions with other proteins. ProMate is trained using
such complexes [55].

Criteria and dataset used in methods evaluation
There is no commonly acceptable standard for evaluating
binding site prediction methods. Some authors measure
performance on a per protein bases, measuring statistics
across the dataset [49], while others measure performance
on a per residue basis [54]. Some authors report sensitivity
and specificity and measure the performance from the
area under the ROC curve [49], while others consider only

the sensitivity and positive predictive values and measure
the method performance from the relative number of suc-
cessful predictions in the test dataset [53].

Approaching the task of evaluation and comparison of
different methods, we encountered a number of ques-
tions. How can we compare scale-based methods with
patch prediction and docking methods? DiscoTope and
ProMate predict one patch per protein, while other meth-
ods predict several patches, how can these be compared?
Using a score value assigned by ProMate, DiscoTope, or
ConSurf to a residue, all epitopes in the protein are taken
into account, so can we say that the method predicts one
epitope per protein? Is not the direct comparison of pro-
tein docking methods (ClusPro (DOT), PatchDock) ver-
sus patch-based prediction methods (DiscoTope,
ProMate, CEP, PPI-PRED) questionable since the former
methods are based on optimization of an interaction
energy function, while the latter depend on training?
Finally, docking methods require knowledge of the struc-
tures of both interacting proteins, antigen and antibody,
while binding site prediction methods are based on the
structure of the protein antigen alone and do not require
knowledge of the antibody structure. Is this a fair compar-
ison? Being aware of these questions and limitations, we
applied various evaluation criteria in an attempt to pro-
vide a thorough and fair comparison of the methods.

The evaluation was performed on the dataset of represent-
ative epitopes, assuming any antigen residue which is not
a part of a considered epitope is part of a non-epitope. We
didn't discard non-epitope residues, which we know
belong to some other epitope in the protein, because we
assumed that a prediction program will predict an epitope
in an antigen for which it doesn't have any additional
information except its sequence and structure – this is
how all evaluated methods were constructed. The analysis
was performed using the representative epitopes from
dataset #2 that were inferred from structures of one-chain
(monomer) antigens in complexes with two-chain anti-
body fragments. There were 59 such epitopes in 48 anti-
gens (Table 2).

The following parameters were used to evaluate the meth-
ods:

Sensitivity (recall or true positive rate (TPR)) = TP/(TP +
FN) – a proportion of correctly predicted epitope residues
(TP) with respect to the total number of epitope residues
(TP+FN).

Specificity (or 1 – false positive rate (FPR)) = 1 - FP/(TN +
FP) – a proportion of correctly predicted non-epitope res-
idues (TN) with respect to the total number of non-
epitope residues (TN+FP).

x
x

x

x

x
x

Distribution of PIER scores for epitope, non-epitope and all protein residuesFigure 7
Distribution of PIER scores for epitope, non-epitope and all 
protein residues.
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)Table 2: Results for representative epitope prediction by patch and protein docking methods

ProMate PPI-PRED 
(1st patch)

PPI-PRED 
(best patch)

PatchDock 1st model PatchDock best model of 10 ClusPro (DOT) 1st model ClusPro (DOT) best model of 10 CEP DiscoTope (-7.7)

antigen epitope antigen size epitope size sensitivity ppv sensitivity ppv sensitivity ppv sensitivity ppv Model # sensitivity ppv sensitivity ppv Model# sensitivity ppv N predictions sensitivity ppv Sensitivity ppv Is in 
training set?&

2ADF:A 2adf_A_HL 196 15 0 0 0.8 0.67 0.8 0.67 0 0 4 0.4 0.29 0.67 0.5 1 0.67 0.5 7 0.27 0.14 0.07 0.11 -
2ADF:A 1fe8_B_IM 196 20 0 0 0.3 0.33 0.3 0.33 0 0 2 0.4 0.38 0.63 0.57 1 0.63 0.57 7 0.32 0.22 0.15 0.33 *
1AFV:A 1afv_A_HL 151 14 0 0 0.57 0.15 0.57 0.15 0.43 0.25 1 0.43 0.25 0 0 1 0 0 6 0.46 0.18 0.43 0.1 -
1BGX:T 1bgx_T_HL 832 52 0 0 0.02 0.01 0.33 0.11 0.79 0.77 1 0.79 0.77 NA NA 17 0.08 0.1 0.37 0.16 -
1E6J:P 1e6j_P_HL 210 12 0 0 0.08 0.03 1 0.41 0 0 9 0.42 0.24 0 0 7 0.42 0.26 5 0.33 0.08 0 0 -
1EGJ:A 1egj_A_HL 101 11 0.27 0.27 0.64 0.44 0.64 0.44 0.27 0.11 1 0.27 0.11 0.73 0.8 1 0.73 0.8 1 1 0.13 0.91 0.16 *
1FSK:A 1fsk_A_CB 159 17 0 0 0.59 0.17 0.59 0.17 0.59 0.31 1 0.59 0.31 0 0 8 0.47 0.47 6 0.12 0.11 0.76 0.22 *
1H0D:C 1h0d_C_BA 123 17 0.65 0.85 0.06 0.05 0.59 1 0 0 10 0.53 0.5 0.59 0.56 1 0.59 0.56 5 0.44 0.16 0.35 0.13 *
1I9R:A 1i9r_A_HL 146 18 0 0 0 0 0 0 0.17 0.14 3 0.78 0.61 0.11 0.14 5 0.44 0.33 7 0.11 0.1 0.17 0.23 -
1IQD:C 1iqd_C_BA 156 16 0.19 0.23 0 0 0 0 0.31 0.14 5 0.94 0.83 0.38 0.32 1 0.38 0.32 5 0.07 0.04 0.56 0.3 *
1JRH:I 1jrh_I_HL 108 15 0.07 0.1 0.67 0.56 0.67 0.56 0.53 0.31 1 0.53 0.31 0.47 0.78 1 0.47 0.78 1 0.73 0.15 0.6 0.26 -
1LK3:A 1lk3_A_HL 160 18 0 0 0 0 0 0 0.11 0.1 2 0.67 0.57 0.22 0.27 5 0.56 0.62 5 0.17 0.14 0.61 0.32 *
1MHP:B 1mhp_B_XY 192 19 0 0 0 0 0.47 0.33 0.74 0.61 1 0.74 0.61 0.68 0.76 1 0.68 0.76 2 0.11 0.13 0.53 0.27 -
1NL0:G 1nl0_G_HL 51 7 0 0 0 0 0 0 0.29 0.25 1 0.29 0.25 0.2 0.07 2 1 0.5 1 0.71 0.42 0.57 0.33 -
1NSN:S 1nsn_S_HL 149 18 0 0 0 0 0.39 0.33 0.5 0.45 1 0.5 0.45 0 0 4 0.28 0.28 3 0.06 0.03 0.39 0.14 -
1OAZ:A 1oaz_A_HL 123 17 0.35 0.5 0.59 0.32 0.59 0.32 0.65 0.46 1 0.65 0.46 0.82 0.82 1 0.82 0.82 5 0.59 0.23 0.29 0.2 *
1ORQ:C 1orq_C_BA 223 14 0 0 0 0 0.5 0.14 0 0 7 0.5 0.26 0.29 0.33 1 0.29 0.33 6 0.54 0.09 0 0 -
1ORS:C 1ors_C_BA 132 10 0.6 0.46 0 0 0.7 0.3 0.2 0.08 4 0.6 0.24 0.4 0.24 1 0.4 0.24 4 0.78 0.11 0 0 *
1PKQ:E 1pkq_E_BA 139 17 0.35 0.5 0.3 0.31 0.3 0.31 0.35 0.21 3 0.65 0.55 0.06 0.06 8 0.29 0.29 8 0.44 0.15 0.47 0.24 -
1RJL:C 1rjl_C_BA 95 13 0 0 0 0 0 0 0.31 0.19 6 0.69 0.39 0 0 1 0 0 5 0.58 0.14 0.54 0.23 -
1SY6:A 1sy6_A_HL 204 11 0 0 0 0 0 0 0 0 1 0 0 0 0 3 0.45 0.24 8 0.3 0.1 0.91 0.14 -
1TZI:V 1tzi_V_BA 102 4 0 0 0 0 0.75 0.3 0 0 1 0 0 0.5 0.09 6 0.75 0.14 3 1 0.05 0.5 0.05 -
1WEJ:F 1wej_F_HL 105 11 0 0 0 0 0 0 0.18 0.11 4 0.73 0.44 0.45 0.36 1 0.45 0.36 5 0.1 0.03 0.45 0.09 -
1YJD:C 1yjd_C_HL 140 14 0.14 0.17 0.5 0.64 0.5 0.64 0.57 0.36 1 0.57 0.36 0 0 4 0.64 0.32 6 0.36 0.11 0.21 0.16 -
1YNT:F 1ynt_F_BA 254 19 0 0 0 0 0.79 0.58 0 0 1 0 0 0.74 0.88 1 0.74 0.88 16 0.11 0.1 0 0 -
1YY9:A 1yy9_A_DC 624 20 0 0 0 0 0 0 0 0 1 0 0 NA NA 22 0 0 0.2 0.07 -
1ZA3:R 1za3_R_HL 134 15 0.13 0.2 0.47 0.41 0.47 0.41 0.73 0.39 1 0.73 0.39 0 0 2 1 0.88 5 0.57 0.2 0.13 0.25 -
1ZTX:E 1ztx_E_HL 108 16 0.06 0.09 0 0 0 0 0.38 0.24 3 0.44 0.37 0 0 3 0.56 0.45 1 0.75 0.16 0.19 0.21 -
2JEL:P 2jel_P_HL 85 15 0 0 0 0 0 0 0 0 3 0.4 0.38 0 0 5 0.47 0.37 5 0.43 0.14 0.07 0.2 -

1A14:N 1a14_N_HL 388 17 0 0 0 0 0.35 0.18 0.18 0.12 6 0.47 0.33 0 0 1 0 0 11 0 0 0.76 0.2 *
1A14:N 1nca_N_HL 388 21 0 0 0 0 0.52 0.33 0 0 4 1 0.81 0 0 5 0.86 0.86 11 0 0 0.62 0.2 *
1RJC:B 1bvk_C_BA 129 17 0 0 0.12 0.09 0.47 0.47 0.06 0.05 1 0.06 0.05 0 0 3 0.76 0.65 3 0.24 0.1 0.29 0.23 *
1RJC:B 1jhl_A_HL 129 11 0 0 0.27 0.13 0.27 0.13 0 0 2 0.82 0.36 0 0 5 0.45 0.33 3 0.1 0.03 0.27 0.14 *
1RJC:B 1ndg_C_BA 129 21 0.29 0.46 0.38 0.35 0.38 0.35 0.57 0.55 1 0.57 0.55 0 0 2 0.33 0.33 3 0.43 0.23 0.33 0.32 *
1RJC:B 1p2c_C_BA 129 18 0.11 0.15 0.17 0.13 0.17 0.13 0.28 0.25 9 0.33 0.33 0.17 0.21 2 0.67 0.6 3 0.56 0.26 0.5 0.41 *
1JPS:T 1jps_T_HL 219 21 0.05 0.1 0.14 0.09 0.14 0.09 0.05 0.04 2 0.57 0.32 0.86 0.9 1 0.86 0.9 7 0.25 0.13 0.33 0.19 *
1AR1:B 1ar1_B_CD 298 16 0 0 0.06 0.03 0.06 0.03 0.06 0.04 1 0.06 0.04 0 0 1 0 0 12 0.13 0.05 0 0 *
1EO8:A 1eo8_A_HL 328 15 0 0 0 0 0.87 0.23 0 0 1 0 0 0 0 1 0 0 14 0.07 0.03 0 0 *
1EO8:A 1ken_A_HL 328 16 0 0 0.69 0.23 0.69 0.23 0 0 1 0 0 0 0 1 0 0 14 0.13 0.06 0.56 0.13 -
1EO8:A 1qfu_A_HL 328 19 0 0 0 0 0.84 0.29 0 0 7 0.21 0.17 0 0 3 0.21 0.27 14 0.11 0.05 0.11 0.03 *
1EO8:A 2vit_C_BA 328 18 0 0 0.33 0.13 0.33 0.13 0.22 0.02 2 1 0.1 0 0 10 0.22 0.33 14 0.18 0.08 0.17 0.04 -
1EZV:E 1ezv_E_XY 185 17 0 0 0 0 0 0 0.18 0.09 7 0.53 0.53 0 0 1 0 0 7 0.31 0.07 1 0.29 *
1OSP:O 1osp_O_HL 257 19 0 0 0.05 0.02 0.05 0.02 0 0 4 0.63 0.31 0 0 1 0 0 14 0.17 0.07 0.53 0.17 *
1OSP:O 1fj1_F_BA 257 17 0 0 0 0 0.71 0.24 0 0 5 0.59 0.3 0.29 0.56 1 0.29 0.56 14 0.25 0.09 0.47 0.14 *
1FNS:A 1fns_A_HL 196 12 0 0 0 0 0 0 0.17 0.07 6 0.42 0.21 0 0 8 0.33 0.22 7 0 0 0.67 0.3 *
1G9M:G 1g9m_G_HL 321 12 0 0 0.67 0.12 0.67 0.12 0.08 0.02 2 0.33 0.1 0.5 0.29 1 0.5 0.29 14 0.18 0.05 0.08 0.01 *
1G9M:G 2b4c_G_HL 321 17 0 0 0.75 0.13 0.75 0.13 0.71 0.21 1 0.71 0.21 0.29 0.21 1 0.29 0.21 14 0.09 0.03 0.08 0.01 -
1R3J:C 1r3j_C_BA 124 13 0 0 0 0 0 0 0.31 0.15 5 0.85 0.85 0.85 0.92 1 0.85 0.92 4 0.42 0.11 0.08 0.09 *

1N8Z:C 1n8z_C_BA 607 17 0.24 0.07 0.3 0.38 0.3 0.38 0.24 0.09 1 0.24 0.09 NA NA 18 0.18 0.1 0.12 0.05 *
1N8Z:C 1s78_B_FE 607 23 0 0 0 0 0 0 0 0 1 0 0 NA NA 18 0.05 0.03 0.22 0.12 -
1NFD:D 1nfd_D_HG 239 13 0 0 0 0 0.92 0.32 0.15 0.06 1 0.15 0.06 0 0 5 0.31 0.18 13 0.25 0.08 0.77 0.16 *
1TQB:A 1tqb_A_BC 102 18 0 0 0.28 0.29 0.67 0.57 0.56 0.53 1 0.56 0.53 0.17 0.2 3 0.5 0.53 2 0.11 0.08 0.78 0.21 *
1TXV:A 1txv_A_HL 452 19 0 0 0 0 0 0 0 0 1 0 0 0 0 7 0.53 0.53 18 0.11 0.06 0.53 0.17 *
1V7M:V 1v7m_V_HL 163 17 0 0 0 0 0.35 0.32 0.41 0.39 1 0.41 0.39 0.35 0.38 1 0.35 0.38 6 0.31 0.15 0.06 0.11 -
1XIW:A 1xiw_A_DC 105 18 0 0 0 0 0 0 1 0.86 1 1 0.86 0.83 0.79 1 0.83 0.79 26 0 0 0.88 0.43 -
1XIW:F 1xiw_F_DC 79 10 0.1 0.14 0 0 0 0 0.1 0.05 8 0.6 0.32 0.1 0.07 1 0.1 0.07 26 0 0 0.4 0.44 -
1Z3G:A 1z3g_A_HL 186 19 0.12 0.11 0.35 0.17 0.35 0.17 0.53 0.3 1 0.53 0.3 0 0 8 0.26 0.25 10 0.25 0.11 0.35 0.35 -
2AEP:A 2aep_A_HL 395 21 0 0 0 0 0.48 0.3 0 0 1 0 0 0.05 0.05 1 0.05 0.05 18 0.1 0.07 0.14 0.05 -
1R0A:B 1r0a_B_HL 429 11 0.73 0.08 0.73 0.08 0.36 0.15 1 0.36 0.15 0 0 1 0 0 10 0 0 1 0.06 *

'NA' means that results for the protein were not obtained.
Significant predictions (p ≤ 0.05) are shown in bold.
& – Epitopes used in the DiscoTope training set are indicated by an asterisk; those not used in the training set are indicated by a hyphen.
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Positive predictive value (PPV) (precision) = TP/(TP + FP)
– a proportion of correctly predicted epitope residues (TP)
with respect to the total number of predicted epitope res-
idues (TP+FN).

Accuracy (ACC) = (TP + TN)/(TP + FN + FP + TN) – a pro-
portion of correctly predicted epitope and non-epitope
residues with respect to all residues.

Area under the ROC Curve (AUC) - A ROC curve is a graph
representing a dependency of TPR versus FPR, or sensitiv-
ity versus specificity. The AUC measure is a widely used
measure for immunoinformatics and bioinformatics
methods; it has also been recommended for methods
comparison in the recent report [25]. The AUC gives the
general performance of the method; it is "equivalent to
the probability that the classifier will rank a randomly
chosen positive instance higher than a randomly chosen
negative instance" [61].

Success Rate - the number of epitopes from the dataset
that were successfully predicted. While the AUC is a con-
venient and commonly used measure in immunoinfor-
matics since many protein-protein binding site prediction
methods, as well as three methods evaluated in the cur-
rent work, ProMate, PPI-PRED, and CEP, used success rate
as a measure of their performance, we considered it neces-
sary to also calculate the methods success rates. While this
measure is easily and naturally interpretable, it requires us
to define the successful prediction and that can be done in
many different ways. For this reason, many scientists try to
avoid using this measure.

The statistical significance of a prediction, that is, the dif-
ference between observed and expected frequencies of an
actual epitope/non-epitope residue in the predicted
epitope/non-epitope, was determined by Fisher's exact
test (right-tailed). The prediction was considered signifi-
cant if the significance level was ≥95%, that is, the P-value
was ≤ 0.05.

The above parameters were applied in evaluating the
methods as follows:

(1) For the scale-based methods, ProMate, DiscoTope,
ConSurf, and PIER, by varying the threshold values for
score values classifying epitope residues from non-epitope
residues, the AUC values have been calculated for each
epitope.

(2) Success rates for all methods were calculated on a per
protein bases taking into account one epitope per protein
predicted with the highest significance. Such an approach
assumes that if the epitope in a protein was successfully
predicted, the prediction for the protein is successful. Cri-

teria used for definition of successful prediction are dis-
cussed further.

(3) Patch prediction methods and protein-protein dock-
ing methods fall in the category of discrete classifiers, that
is, they classify a residue as an epitope or non-epitope res-
idue with no score assigned. Therefore, a ROC curve can-
not be generated for these methods, only the AUC value
can be estimated. Other statistics have also been obtained
for these methods by averaging statistical values over
epitopes and then calculating the overall statistical values
over epitope and non-epitope residues in the dataset.

Prediction of individual epitopes
The results for each method in predicting 59 representa-
tive epitopes are given in Tables 2, 3 and supplementary
materials [see Additional file 2]. For scale-based methods
only the AUC values were computed (Table 3), while for
patch prediction and docking methods all other statistics
were produced (Table 2 and supplementary materials [see
Additional file 2]).

DiscoTope and ProMate predict only one epitope per pro-
tein. ClusPro and PatchDock rank predicted models start-
ing from the model with the best score. For these
methods, the first (by rank) prediction was considered. If
it was not significant (p > 0.05), the next by rank signifi-
cant prediction (not exceeding the 10 best predictions)
was reported in Table 2. Since the number of epitopes pre-
dicted by CEP in a protein varies (Table 2) and they are
not ranked, the average prediction was reported for each
epitope. More detailed statistics on the prediction results
is provided in the supplementary table  [see Additional
file 2].

No one epitope was predicted by all methods (Table 2).
Some epitopes, for example, HyHEL-8 on HEL
[PDB:1NDG] and 8–18C5 on myelin oligodendrocyte
glycoprotein [PDB:1PKQ], were predicted by all methods
except CEP (Table 2). Two epitopes, cetuximab on EGFR
[PDB:1YY9] and 7E2C50S on cytochrome c oxidase
[PDB:1AR1], appeared to be difficult to predict; they
could probably be predicted using the ConSurf average
score in combination with a patch generation method.
The extracellular region of EGFR [PDB:1YY9] is a large
(624 aa) loosely-packed multi-domain protein with a lot
of loops and hence epitope recognition appears difficult.
Similarly, recognition of epitopes on subunit II of cyto-
chrome c oxidase [PDB:1AR1] appears problematic
because the protein possesses long protruded α-helixes.

The lower specificity of CEP and DiscoTope [see Addi-
tional file 2] results from these methods predicting larger
epitopes (average size of predicted epitope by CEP is 40
residues, DiscoTope (-7.7) – 43 and DiscoTope (-10.5) –
Page 10 of 19
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Table 3: AUC values for representative epitopes

antigen epitope PIER ConSurf ConSurf 
(confidence score)

ProMate 
(score)

ProMate 
(patch)

PPI-PRED 
(1st patch)

PPI-PRED 
(best patch)

PatchDock 
1st model

PatchDock 
best model of 10

ClusPro (DOT) 
1st model

ClusPro (DOT) 
best model of 10

CEP DiscoTope 
(score)

DiscoTope 
(-7.7)

Is in training
 set?&

2ADF:A 2adf_A_HL 0.01 0.62 0.62 0.88 NA 0.88 0.88 0.45 0.66 0.81 0.81 0.57 0.53 0.51 -
2ADF:A 1fe8_B_IM 0.16 0.67 0.67 0.65 NA 0.62 0.62 0.45 0.67 0.79 0.79 0.60 0.81 0.56 *
1AFV:A 1afv_A_HL 0.78 0.48 0.41 0.60 0.49 0.62 0.62 0.65 0.65 0.43 0.43 0.63 0.53 0.52 -
1BGX:T 1bgx_T_HL 0.39 0.48 0.50 0.56 NA 0.42 0.58 0.89 0.89 NA NA 0.52 0.74 0.62 -
1E6J:P 1e6j_P_HL 0.51 0.43 0.39 0.41 NA 0.46 0.96 0.43 0.67 0.47 0.67 0.55 0.23 0.30 -
1EGJ:A 1egj_A_HL 0.09 NA NA 0.84 0.59 0.77 0.77 0.50 0.50 0.85 0.85 0.61 0.88 0.67 *
1FSK:A 1fsk_A_CB 0.85 0.31 0.33 0.54 0.44 0.62 0.62 0.72 0.72 0.44 0.70 0.50 0.82 0.71 *
1H0D:C 1h0d_C_BA 0.25 0.51 0.51 0.97 0.82 0.43 0.80 0.38 0.73 0.76 0.76 0.55 0.50 0.49 *
1I9R:A 1i9r_A_HL 0.47 0.72 0.74 0.43 0.45 0.45 0.45 0.51 0.86 0.51 0.66 0.48 0.71 0.55 -
1IQD:C 1iqd_C_BA 0.10 0.80 0.81 0.74 0.56 0.44 0.44 0.55 0.96 0.64 0.64 0.45 0.78 0.71 *
1JRH:I 1jrh_I_HL 0.57 0.62 NA 0.49 0.49 0.79 0.79 0.67 0.67 0.72 0.72 0.53 0.62 0.67 -
1LK3:A 1lk3_A_HL 0.71 0.72 0.76 0.38 0.45 0.40 0.40 0.49 0.81 0.57 0.76 0.52 0.81 0.72 *
1MHP:B 1mhp_B_XY 0.15 0.44 0.42 0.88 NA 0.42 0.68 0.85 0.85 0.83 0.83 0.52 0.81 0.69 -
1NL0:G 1nl0_G_HL 0.23 NA NA 0.16 0.45 0.42 0.42 0.58 0.58 0.46 0.95 0.78 0.61 0.69 -
1NSN:S 1nsn_S_HL 0.76 0.75 0.78 0.26 0.45 0.40 0.64 0.71 0.71 0.44 0.59 0.41 0.58 0.53 -
1OAZ:A 1oaz_A_HL 0.17 0.33 0.25 0.85 0.65 0.70 0.70 0.77 0.77 0.90 0.90 0.64 0.61 0.55 *
1ORQ:C 1orq_C_BA 0.65 0.60 0.61 0.55 0.44 0.33 0.64 0.42 0.70 0.63 0.63 0.60 0.48 0.44 -
1ORS:C 1ors_C_BA 0.59 NA NA 0.96 0.77 0.39 0.78 0.51 0.72 0.65 0.65 0.66 0.50 0.42 *
1PKQ:E 1pkq_E_BA 0.48 0.69 0.70 0.76 0.65 0.60 0.60 0.59 0.79 0.46 0.60 0.56 0.71 0.63 -
1RJL:C 1rjl_C_BA 0.64 0.51 0.48 0.33 0.48 0.37 0.37 0.55 0.76 0.39 0.39 0.53 0.73 0.62 -
1SY6:A 1sy6_A_HL 0.83 0.45 NA 0.54 0.49 0.43 0.43 0.43 0.43 0.45 0.68 0.58 0.82 0.80 -
1TZI:V 1tzi_V_BA 0.20 0.49 0.55 0.56 0.45 0.37 0.84 0.36 0.36 0.64 0.78 0.60 0.52 0.54 -
1WEJ:F 1wej_F_HL 0.67 0.82 0.83 0.33 0.44 0.45 0.45 0.50 0.81 0.68 0.68 0.39 0.47 0.45 -
1YJD:C 1yjd_C_HL 0.44 0.53 0.54 0.80 0.53 0.73 0.73 0.73 0.73 0.44 0.74 0.52 0.58 0.54 -
1YNT:F 1ynt_F_BA 0.31 NA NA 0.69 NA 0.44 0.87 0.44 0.44 0.87 0.87 0.51 0.49 0.46 -
1YY9:A 1yy9_A_DC 0.46 0.74 0.75 0.20 0.45 0.46 0.46 0.47 0.47 NA NA 0.48 0.68 0.55 -
1ZA3:R 1za3_R_HL 0.29 0.72 0.77 0.61 0.53 0.69 0.69 0.80 0.80 0.45 0.99 0.65 0.69 0.54 -
1ZTX:E 1ztx_E_HL 0.73 0.63 0.63 0.37 0.48 0.43 0.43 0.59 0.66 0.39 0.72 0.54 0.47 0.54 -
2JEL:P 2jel_P_HL 0.58 0.70 0.70 0.59 NA 0.41 0.41 0.36 0.63 0.40 0.65 0.44 0.66 0.51 -

1A14:N 1a14_N_HL 0.69 0.75 0.76 0.38 0.45 0.46 0.64 0.56 0.72 0.47 0.47 0.47 0.87 0.81 *
1A14:N 1nca_N_HL 0.56 0.67 0.69 0.30 0.45 0.46 0.73 0.46 1.00 0.47 0.93 0.47 0.84 0.74 *
1RJC:B 1bvk_C_BA 0.61 0.62 0.61 0.66 0.44 0.47 0.69 0.44 0.44 0.44 0.85 0.46 0.66 0.57 *
1RJC:B 1jhl_A_HL 0.45 0.73 0.73 0.51 0.44 0.55 0.55 0.42 0.84 0.44 0.68 0.39 0.79 0.55 *
1RJC:B 1ndg_C_BA 0.46 0.66 0.65 0.66 0.61 0.62 0.62 0.74 0.74 0.40 0.60 0.57 0.74 0.60 *
1RJC:B 1p2c_C_BA 0.70 0.55 0.57 0.48 0.51 0.49 0.49 0.57 0.61 0.54 0.80 0.65 0.74 0.69 *
1JPS:T 1jps_T_HL 0.49 0.63 0.72 0.77 0.50 0.49 0.49 0.46 0.72 0.92 0.92 0.54 0.62 0.59 *
1AR1:B 1ar1_B_CD 0.87 0.62 0.64 0.15 0.46 0.48 0.48 0.49 0.49 0.47 0.47 0.49 0.57 0.45 *
1EO8:A 1eo8_A_HL 0.43 0.64 0.65 0.67 0.49 0.42 0.87 0.45 0.45 0.48 0.48 0.48 0.27 0.39 *
1EO8:A 1ken_A_HL 0.32 0.61 0.62 0.59 0.49 0.79 0.79 0.44 0.44 0.49 0.49 0.51 0.76 0.68 -
1EO8:A 1qfu_A_HL 0.54 0.64 0.64 0.60 0.49 0.42 0.86 0.45 0.58 0.48 0.59 0.50 0.38 0.44 *
1EO8:A 2vit_C_BA 0.51 0.56 0.63 0.48 0.49 0.60 0.60 0.29 0.68 0.48 0.59 0.54 0.58 0.48 -
1EZV:E 1ezv_E_XY 0.84 0.62 0.64 0.23 0.44 0.42 0.42 0.50 0.74 0.48 0.48 0.47 0.85 0.88 *
1OSP:O 1osp_O_HL 0.90 0.41 0.38 0.82 NA 0.40 0.40 0.46 0.76 0.48 0.48 0.49 0.76 0.66 *
1OSP:O 1fj1_F_BA 0.17 0.50 0.50 0.62 NA 0.37 0.77 0.45 0.75 0.64 0.64 0.54 0.68 0.63 *
1FNS:A 1fns_A_HL 0.50 0.57 0.57 0.40 NA 0.45 0.45 0.52 0.66 0.45 0.63 0.44 0.92 0.78 *
1G9M:G 1g9m_G_HL 0.17 0.49 0.48 0.68 0.45 0.74 0.74 0.47 0.61 0.73 0.73 0.53 0.44 0.43 *
1G9M:G 2b4c_G_HL 0.13 0.46 0.44 0.68 0.45 0.78 0.78 0.79 0.79 0.62 0.62 0.48 0.43 0.43 -
1R3J:C 1r3j_C_BA 0.84 0.81 0.81 0.53 0.45 0.42 0.42 0.56 0.92 0.92 0.92 0.52 0.72 0.49 *

1N8Z:C 1n8z_C_BA 0.30 0.46 0.46 0.82 0.57 0.64 0.64 0.59 0.59 NA NA 0.57 0.59 0.53 *
1N8Z:C 1s78_B_FE 0.16 0.56 0.57 0.60 0.45 0.49 0.49 0.47 0.47 NA NA 0.50 0.55 0.58 -
1NFD:D 1nfd_D_HG 0.90 0.73 0.71 0.34 0.46 0.43 0.90 0.51 0.51 0.46 0.62 0.55 0.88 0.77 *
1TQB:A 1tqb_A_BC 0.44 0.42 0.44 0.33 0.43 0.57 0.78 0.73 0.73 0.51 0.70 0.41 0.59 0.57 *
1TXV:A 1txv_A_HL 0.64 0.88 0.89 0.59 0.45 0.43 0.43 0.47 0.47 0.47 0.75 0.52 0.87 0.71 *
1V7M:V 1v7m_V_HL 0.67 0.59 NA 0.37 0.48 0.45 0.63 0.67 0.67 0.64 0.64 0.56 0.47 0.50 -
1XIW:A 1xiw_A_DC 0.85 0.76 0.90 0.31 0.44 0.41 0.41 0.99 0.99 0.89 0.89 0.45 0.87 0.83 -
1XIW:F 1xiw_F_DC 0.69 0.65 0.74 0.60 0.51 0.41 0.41 0.42 0.71 0.45 0.45 0.48 0.59 0.66 -
1Z3G:A 1z3g_A_HL 0.48 0.65 0.59 0.34 0.51 0.59 0.59 0.70 0.70 0.43 0.59 0.53 0.66 0.64 -
2AEP:A 2aep_A_HL 0.68 0.50 0.51 0.43 0.45 0.46 0.71 0.46 0.46 0.50 0.50 0.52 0.70 0.49 -
1R0A:B 1r0a_B_HL 0.12 0.51 0.54 0.02 NA 0.76 0.76 0.65 0.65 0.47 0.47 0.45 0.94 0.79 *

'NA' means that results for the epitope/protein were not obtained.
& – Epitopes used in the DiscoTope training set are indicated by an asterisk; those not used in the training set are indicated by a hyphen.
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80 residues) in comparison with other methods. The aver-
age size of predicted epitope size for PatchDock is 29 res-
idues, ClusPro (DOT) is 17 residues, and PPI-PRED is 32
residues. The size of actual epitopes in the dataset varies
from 4 to 52 residues (  = 16, s = 6). However, it should
be emphasized that if the most of the methods considered
were designed to predict an epitope as a whole single
entity, DiscoTope focuses on the prediction of individual
epitope residues that can be part of several different
epitopes in the same protein. Therefore, the average size of
the epitope predicted by DiscoTope is large; moreover, the
predicted epitope residues can be located too far from
each on the protein surface to form a single epitope.

Overall performance of each method
The overall performance of each method have been com-
pared first using average AUC values for all methods and
then calculating all other statistics for patch prediction
and protein-protein docking methods. Both comparisons
were made on different subsets of representative epitopes
from dataset #2.

Calculating AUC values for all methods, we discarded
from the analysis the proteins for which any method
didn't produced a result (ConSurf, ProMate, and ClusPro
(DOT) were not able to predict epitopes for several pro-
teins, see Methods). The final subset contained 42
epitopes from Table 2 of which 21 epitopes were not used
for DiscoTope training. All other methods didn't use any
epitopes for training.

AUC values averaged on subsets of 42 and 21 epitopes are
shown in Figure 8. ConSurf, DiscoTope, PPI-PRED and
docking methods, when the 10 best models were consid-
ered, demonstrated average AUC values above 0.6, that is,
poor or mediocre performance. PatchDock was the best,
giving an AUC of 0.69. All other methods performed close
to random (Fig. 8). DiscoTope gave AUC values of 0.65
and 0.62 on all representative epitopes and those that
were not used by the method for training, respectively.
When DiscoTope performance was evaluated by the
authors of the method [49], it gave an AUC value of 0.71
averaged over the five evaluation sets used for cross-vali-
dation.

x

Average AUC values for each methodFigure 8
Average AUC values for each method. Vertical bars show one standard deviation.
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For patch prediction and docking methods, to avoid the
problematic comparison of methods predicting one
epitope per protein with those that predict several
epitopes, all epitopes from proteins with more than one
epitope have been removed from dataset #2. Epitopes
from proteins for which any method did not produce the
prediction have also been discarded. The following statis-
tics were calculated on the resulting subset of epitopes.

First, FP, FN, TP, and TN values were summarized for the
whole pool of epitopes, and sensitivity, specificity, accu-
racy, PPV, and AUC values calculated for each method
(Table 4, upper part). AUC values obtained in this way
were close to those demonstrated in Fig. 9. The best per-
formers were docking methods PatchDock and DOT
when the top ten models were considered, giving AUC
values of 0.66 and 0.69, respectively (Table 4). Among the
methods producing one prediction per protein, Disco-
Tope was rated the best by with an AUC of 0.60.

Second, statistics were averaged over epitopes (Table 4,
lower part). The overall performance was poor for all
methods. The best performance demonstrated by docking
methods (when the 10 best models were considered) was
41% PPV (precision) and 46% sensitivity (recall) for Clus-
Pro(DOT) and 30% PPV and 42% sensitivity for Patch-
Dock. Among the methods producing one prediction per
protein, DiscoTope was rated the best by sensitivity (43%
sensitivity at 18% PPV) and ClusPro(DOT) first model by
PPV (25% sensitivity and 25% PPV) (Fig. 9).

Comparison of success rates
Since patch prediction methods used in the current analy-
sis used success rate as a performance measure, we addi-
tionally calculated the methods success rate on the subset
of 42 epitopes used for overall methods comparison
above. The prediction of each epitope was deemed suc-

cessful if the AUC value was above a threshold value of 0.6
or 0.7. The results are presented in Fig. 10.

The proportion of epitopes predicted with an AUC ≥ 0.6
for the scale-based methods (PIER, ConSurf, ProMate,
and DiscoTope) and the methods providing only one pre-
diction per protein (ProMate, DiscoTope, PPI-PRED first
prediction, PatchDock first model and ClusPro(DOT) first
model) was lower than 50% except for ConSurf and Dis-
coTope methods, which showed success rates of approxi-
mately 60% (white bars in Fig. 10). Among the methods
predicting several epitopes per protein (PPI-PRED, Patch-
Dock, ClusPro(DOT), and CEP) PatchDock performed
best with >75% successful predictions at an AUC ≥ 0.6
and 55% at an AUC ≥ 0.7 (Fig. 10).

PPI-PRED predicted 75% of protein-protein binding
interfaces successfully, with a specificity over 50% and
sensitivity over 20%, values previously used to claim suc-
cess [53]. The ProMate's authors reported a success rate for
protein-protein binding site prediction of 70% [55], while
application of the criteria used in PPI-PRED gave Pro-
Mate's success rate as 36% [53]. According to our data [see
Additional file 2], the prediction with an AUC ≥ 0.6 corre-
sponded to a significant prediction (P-value < 0.05) at a
sensitivity >30%. Using an AUC ≥ 0.6 as a criterion of suc-
cessful prediction, PPI-PRED gave 60% and ProMate 35%
successful predictions, respectively (Fig. 10). Neither Pro-
Mate nor PPI-PRED used antibody-protein interfaces for
their methods development; nevertheless, they predicted
epitopes with a success rate comparable to those for pre-
diction of protein interfaces.

Epitopes and other protein-protein interfaces indeed
share many properties. Thus, Blythe [62] compared 57
protein-protein binding interfaces of 44 proteins from the
dataset used for ProMate development [55] with epitopes
and paratopes inferred from X-ray structures of 37 com-

Table 4: Overall performance of patch prediction and protein-protein docking methods

statistics ProMate PPI-PRED 
1st patch

PPI-PRED 
best patch

PatchDock 
1st model

PatchDock best 
model of 10

ClusPro (DOT) 
1st model

ClusPro (DOT) 
best model of 10

CEP DiscoTope 
(-7.7)

sensitivity 0.091 0.153 0.331 0.300 0.425 0.258 0.453 0.310 0.416
1-specificity 0.083 0.161 0.135 0.135 0.114 0.079 0.067 0.223 0.214
PPV 0.101 0.083 0.188 0.175 0.262 0.235 0.390 0.110 0.155
accuracy 0.841 0.780 0.819 0.816 0.846 0.863 0.892 0.739 0.754
AUC 0.504 0.496 0.598 0.583 0.656 0.589 0.693 0.544 0.601

P-value 0.27 1.0 7.8E-30 9.0E-23 <1.0E-50 7.9E-34 <1.0E-50 4.3E-06 4.1E-25

Statistics averaged over epitopes
sensitivity 0.09 ± 0.17 0.15 ± 0.24 0.34 ± 0.32 0.27 ± 0.24 0.42 ± 0.29 0.25 ± 0.31 0.46 ± 0.28 0.34 ± 0.28 0.43 ± 0.31
1-specificity 0.08 ± 0.03 0.16 ± 0.07 0.14 ± 0.07 0.15 ± 0.06 0.13 ± 0.07 0.10 ± 0.07 0.08 ± 0.05 0.28 ± 0.20 0.22 ± 0.15
PPV 0.11 ± 0.20 0.10 ± 0.17 0.21 ± 0.24 0.18 ± 0.19 0.30 ± 0.25 0.25 ± 0.33 0.41 ± 0.29 0.11 ± 0.08 0.18 ± 0.12
accuracy 0.83 ± 0.05 0.77 ± 0.07 0.81 ± 0.08 0.80 ± 0.08 0.83 ± 0.09 0.84 ± 0.09 0.88 ± 0.07 0.69 ± 0.17 0.74 ± 0.12
AUC 0.51 ± 0.09 0.50 ± 0.13 0.60 ± 0.17 0.56 ± 0.11 0.64 ± 0.17 0.58 ± 0.17 0.69 ± 0.15 0.53 ± 0.08 0.60 ± 0.13
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plexes calculating the following interface properties:
amino acid composition, hydrophobicity by the Eisen-
berg's scale [63], amino acid contribution to form inter-
molecular hydrogen bonds, residue evolutionary conserv-
ancy, and several geometrical parameters, such as
planarity and complementarity of interfaces. Epitopes and
non-obligate heterodimer interfaces were very similar
considering all the aforementioned properties except resi-
due conservancy; epitope residues were more variable
than heterodimer interfaces [62]. The current work addi-
tionally demonstrates that, on average, epitope residues
are significantly less conservative than protein surface res-
idues. Indeed, protein-protein interaction sites are under
evolutionary pressure to be more conserved than protein
surface residues on average. While antibody-antigen inter-
actions are not under evolutionary pressure, they are
under the selection pressure from the host immune sys-
tem. This selection pressure is assumed to cause polymor-
phisms in pathogens and to explain the variability of
immune epitopes.

Conclusion
Benchmark datasets for use in B cell structural epitope pre-
diction have been constructed and made available. Using
these benchmark data, eight publicly available web serv-

Proportion of successfully predicted epitopesFigure 10
Proportion of successfully predicted epitopes.

Overall methods performance measured as average sensitiv-ity and PPV valuesFigure 9
Overall methods performance measured as average sensitiv-
ity and PPV values.
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ers and their associated methods were evaluated. Several
schemes for methods evaluation were considered.

The overall performance was poor for all methods and did
not exceed an average AUC of 0.7 and 40% positive pre-
dictive value (precision) at 46% sensitivity (recall). The
values of the area under the receiver operating characteris-
tic (ROC) curve for the evaluated methods were about 0.6
for ConSurf, DiscoTope, and PPI-PRED (when all predic-
tions were considered) and above 0.65 but not exceeding
0.7 for protein-protein docking methods when the best of
the top ten models for the bound docking were consid-
ered. Certainly a best case, since under real conditions
many more models would be presented. Other methods,
PIER, ProMate (both scores and patch prediction), CEP,
PPI-PRED first patch, and the first models of docking
methods, performed close to random. Despite the fact
that structural epitopes and protein-protein non-obligate
transient heterodimer interfaces share many properties,
protein-protein binding site prediction methods were
poor epitope predictors.

When the top ten models and bound docking were con-
sidered, the docking methods performed the best, espe-
cially PatchDock, where success can be explained by
application of the CDR filter, which the DOT algorithm
does not use. Independent evaluation of PPI-PRED and
four docking algorithms (DOT, PatchDock, ZDOCK, and
webGRAMM) made by Martin Blythe [62] and not availa-
ble to us until the peer-reviewing stage of the manuscript
agrees with the results presenting in the current work.
Using the Matthew's Correlation Coefficient (MCC),
Blythe measured the correlation between predicted and
structural epitopes and paratopes inferred from 37 anti-
body-protein complexes. For the first models, all evalu-
ated methods demonstrated near random correlations.
Likewise, when the top ten models for each complex were
considered, low and negative MCC values prevailed over
positive values for all algorithms except PatchDock. Fur-
ther experiments demonstrated that using the CDR filter
may improve the prediction. Thus, using predefined CDRs
for antibodies, the DOT method significantly improved
and showed MCC values comparable with those for
PatchDock [62].

Obviously, unbound docking would have more practical
value for epitope prediction than bound docking. How-
ever, the performance of unbound docking for antibody-
antigen interactions, as was shown by the authors of
PatchDock, was unsatisfactory in comparison to bound
docking and other protein-protein interaction methods
[64]. While the bound docking considered in this work
has no practical value for epitope prediction, it needs to
be benchmarked to further improve unbound docking

algorithms and tune them for modeling antibody-antigen
complexes.

Currently the problem of B-cell epitope prediction is far
from solved: structure-based method for prediction of dis-
continuous epitopes perform on the same level as
sequence-based methods for prediction of continuous
epitopes giving the area under the receiver operating char-
acteristic curve (AUC) values of approximately 0.60 [25].

Three definitions of an epitope inferred from the X-ray
structure of antibody-protein complexes were considered,
but this made no significant difference to the predictions.
Hence, we finally considered an epitope residue as the
protein antigen residue for which any atom is separated
from any antibody atom by a distance ≤ 4Å.

Currently, each method requires writing a separate parser
taking into account different representations of the output
data. There is a need to develop a common format for out-
put data generated by both scale-based and patch genera-
tion tools that is easily interpreted by both a human and
computer.

Given these shortcomings and current success rates, how
can epitope prediction be improved? The availability of
larger datasets containing only well-defined epitopes
inferred from X-ray structures of antibody-protein com-
plexes, which are then used for training, would help. This
will come over time as the PDB continues to grow at a
rapid rate. This need, in the context of continuous epitope
prediction, has been noted by others [25]. The perform-
ance of docking algorithms might be improved by tuning
them specifically for antibody-antigen complexes. Exist-
ing B-cell epitope prediction methods utilize only a few
features characterizing epitopes (amino acid propensities,
residue solvent accessibility, spatial distribution, and
inter-molecular contacts). Therefore, another possible
way for improving the prediction would be to utilize more
features that discriminate epitopes from non-epitopes, for
example, the evolutionary conservation score. This
assumes that an epitope is indeed a discreet entity based
upon what we know about proteins today. Perhaps the
more fundamental question is whether it makes sense to
consider a B-cell epitope a discrete feature of a protein at
all? Time will tell as more X-ray structures on antibody-
protein complexes become available.

Methods
Surface residue
is defined as a protein residue with a relative ASA of ≥ 1%
as calculated by the program NACCESS. This cut-off was
previously used by Jones & Thornton [46].
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Data sets compilation
169 structures of protein antigens (length >30 amino
acids) in complex with antibody fragments have been
manually collected from the PDB [41] of January 2006 at
a resolution ≤4Å. Every structure has been manually
curated within the IEDB database [1] and inspected using
the EpitopeViewer visualization tool developed by the
authors [65]. Structures in which the antibody binds anti-
gen but involves no CDR residues have been excluded
from the analysis; there were four such structures [PDB:
1MHH, 1HEZ, 1DEE, 1IGC]. If a structure contained sev-
eral complexes in one asymmetric unit (there were 46
such structures in 165) and the authors of the structure
observed no structural difference between these com-
plexes, only one complex was selected – those that were
specified as a reference complex by the authors of the arti-
cle describing the structure (primary citation in the PDB);
there were 18 such structures out of 46. If the authors
didn't provide this information, all complexes in the
structure were considered for analysis. The authors of a
few structures clearly stated in their papers that antibody-
protein contacts in the complexes were different: [PDB:
1MLC, 1NFD, 1OB1, 1P2C, 1QFW]. This initial curation
has performed in order to correctly assign the protein-
antibody complexes and decrease the number of individ-
ual complexes analyzed from 226 to 187 from a total of
169 structures. A total of 24 complexes were formed by
one-chain antibody fragments and 163 complexes by two-
chain antibody fragments. Alignment of protein chains
was performed using the CE algorithm [58].

Web-servers evaluation
The publicly available web-servers implementing 3D
structure-based methods for protein-protein binding site
and/or discontinuous epitope prediction were identified
through PubMed and web searches. Eight web-servers
were selected for evaluation (Table 1). The servers were
tested between June and September of 2006, and results
reflect the method implemented by the servers at that
time. In all cases the default parameters provided by each
server were used.

PPI-PRED provides up to three surface patches predicted
as putative binding sites. The batch mode for data submis-
sion was used.

CEP provides residues forming the putative conforma-
tional epitopes (there could be more than 20 predictions
per protein antigen). CEP includes residues with accessi-
bility less than 25%. In this work, only residues with
accessibility more than 25% were considered as a part of
the epitope.

DiscoTope assigns a score to each protein residue that
reflects the probability of that residue being part of an

epitope and also provides a list of residues included in the
predicted epitope (patch). DiscoTope predicts one
epitope per protein.

ProMate returns results in four different formats. In this
work, the two formats provided for each residue patch/
non-patch identifier and residue interface probability
were used. The batch version of ProMate, MultiProMate,
was used.

PIER returns a list of residues with assigned PIER index
values indicating how likely a particular residue is to be
involved in protein interface formation, with higher val-
ues meaning higher probability. A PIER index above 30
indicates a likely protein-protein binding interface resi-
due, and below zero an unlikely interface residue.

ConSurf calculates a conservation score for each protein
residue based on a PSI-BLAST alignment of unique
homologous sequences found in UniProtKB/Swiss-Prot
[66]. For each protein residue, ConSurf provides a nor-
malized score, so that the average score for all residues in
the protein is zero, and the standard deviation is one. The
conservation scores calculated by ConSurf are a relative
measure of the evolutionary conservation at each residue
of the target protein. The lowest scores represent the most
conserved positions in the protein. ConSurf provides out-
put data in different formats. In this analysis the "Amino
Acid Conservation Score" output files were used. These
files provide, together with normalized conservation score
for each residue, residue color values (scale of 1–9) and
confidence intervals for the conservation score and color
(for the Bayesian method of calculation which is used by
default). Amino acid positions that are assigned confi-
dence intervals that are too large to be trustworthy are
marked in the output files. Both all residues with conser-
vation scores and residues for which scores were confident
(not marked in the output files of the ConSurf server), i.e.,
a confident interval assigned to the score was less than
50% [56], were used in this study.

ClusPro running the DOT program returns the ten best
models as one PDB formatted file re-numerating protein
chains, residues and atoms. DOT is limited to proteins not
exceeding 3,700 atoms.

PatchDock returns up to 2,000 models each as a separate
PDB formatted file and provides the option to retain the
100 best models in one archive file. The ten best (by
model score) were used in the current analysis. Also the
filter for antigen-antibody interactions provided by Patch-
Dock was used. That is, surface patches intersecting the
CDR regions of the antibody. CDRs are detected by align-
ing the sequence of the given antibody to a consensus
sequence from a library of antibodies [64].
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ClusPro and PatchDock differ from the other servers
tested by providing protein-protein docking. To use these
servers the user needs to provide the structure of the anti-
body along with the antigen structure. We used the struc-
tures of protein antigen and antibody from the same
complex, hence, only bound docking was considered. As
was shown by the authors of the method, PatchDock
bound docking substantially out-performed unbound
docking [64].

The AUC values for scale-based methods were calculated
using the algorithm of Tom Fawcett [61]. For discrete clas-
sifiers, that is, methods producing the only point on the
ROC plot with coordinates {x; y}, the AUC was calculat-
ing as 0.5 * (1 - x + y).

Molecule images were produced using the WebLabViewer
software (Accelrys Inc.).
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CDR – Complementary Determined Region of the Anti-
body.

Fab – antigen-binding fragment of antibody that includes
one complete light chain paired with one heavy chain
fragment containing the variable domain and the first
constant domain.

VHH – antigen-binding fragment of the antibody that
includes the variable domain of the heavy chain.

Fv – antigen-binding fragment of antibody that includes
variable domains of heavy and light chains.

scFv – antigen-binding fragment of the antibody that
includes the covalently linked variable domains of the
heavy and light chains.

TCR – T Cell receptor.

 – sample arithmetic mean.
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TP, FP, TN, FN – true positives, false positives, true nega-
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ROC – Receiver Operating Characteristics.

AUC – area under the ROC curve.
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tein complexes available in the PDB of January, 2006 and used in this 
work.
Click here for file
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Additional file 2
The detailed statistics on the prediction results for 59 representative 
epitope. This table provides additional information that complements the 
Tables 2 and 3. The analysis was performed using 59 representative 
epitopes from dataset #2 that were inferred from structures of one-chain 
(monomer) antigens in complexes with two-chain antibody fragments.
Click here for file
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